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The positions and intensities of the Q(N) (N ) 1-4) X1Σg
+ f npπ1Πu

- (n ) 2 to ∼30) absorption transitions
of H2 have been calculated by multichannel quantum defect theory. The computations are based on the quantum
chemical ab initio clamped nuclei potential curves and absorption dipole transition moments for n ) 2-4 of
Wolniewicz and Staszewska (J. Mol. Spectrosc. 2003, 220, 45). The resulting Einstein spontaneous Einstein
A coefficients are in good agreement with those derived from the absolute intensity measurements of Glass-
Maujean et al. (Mol. Phys. 2007, 105, 1535). The results reveal widespread vibronic intensity perturbations
in the Q(N) Rydberg series, whereas the line frequencies are comparatively little affected by nonadiabatic
effects.

1. Introduction

Multichannel quantum defect theory (MQDT) combined with
the frame transformation concept is perhaps the most successful
theoretical approach capable of treating electronically excited
molecular systems beyond the Born-Oppenheimer approxi-
mation.1-4 It surpasses the traditional coupled equations ap-
proach in that it is not restricted to just a few excited states
which have to be added to the treatment one by one but instead
handles whole families of excited states (Rydberg series) up to
the ionization thresholds and beyond. Furthermore, using the
powerful concept of frame transformations, MQDT bypasses
the evaluation of the electronic coupling matrix elements, which
require the knowledge of numerical ab initio electronic wave
functions. A quantitative comparison of the two approaches may
be made by referring to two papers which appeared more than
10 years ago,5,6 where each theory was applied to the same
vibronic problem.

Numerous applications of MQDT to molecular spectroscopic
problems have been published during the last decades, progress-
ing from rotationally resolved absorption,4,7 emission,8 or
multiphoton ionization spectroscopy and dynamics9,10 to hy-
perfine resolved millimeter wave and photoionization spectros-
copy.11-13 However, to our knowledge, no quantitative MQDT
study of molecular line intensities of any molecule has been
made so far in a situation where absolute measured line
intensities were available for comparison.

In this paper, we present a fully ab initio calculation of the
line positions and intensities of the Q(N) (N ) 1-4) absorption
transitions in molecular hydrogen H2, based on MQDT. We
extract the quantum defects and channel dipole transition
moments from the latest ab initio calculations of Wolniewicz
and collaborators14-16 and use them in the framework of the
nonadiabatic frame transformation-MQDT. We obtain overall

good agreement with the recent synchrotron-based absolute
intensity measurements of Glass-Maujean et al.17 It is well-
known that the energy positions of the excited levels of H2 of
1Πu

- symmetry (which are the upper states reached by the Q
transitions) are only little affected by vibronic interactions. By
contrast, the intensities of the Q transitions are surprisingly
strongly perturbed by the 1Πu - ∼ 1Πu

- vibronic interactions
in many instances, even when the line positions are apparently
unperturbed. This fact had been established experimentally in
ref 17 and is confirmed by the present calculations.

2. Determination of Quantum Defects and Channel
Transition Moments from Quantum Chemical Data

We use quantum defect theory in its simplest form by
disregarding channel interactions between singly excited and
doubly (core) excited Rydberg channels. In other words, we
assume that the manifold of the 1Πu excited states of H2

represent a single unperturbed npπ Rydberg series converging
to the X+ 2Σg

+ ground state of H2
+. Correlation between the

excited electron and the ion core electron are included in an
effective manner in the quantum defects because we extract the
latter from highly accurate theoretical clamped nuclei (Born-
Oppenheimer) potential energy curves14,16 in which electron
correlation has been fully accounted for. We use the familiar
one-channel Rydberg equation

written here in atomic energy units in order to extract the
quantum defects for 1Πu symmetry. Unpπ(R) is the clamped
nuclei curve for the npπ Rydberg state and U +(R) is the
corresponding curve for the ion ground state, X+ 2Σg

+. We used
the data for n ) 2 (C state), 3 (D state), and 4 (D′ state) from
ref 14 (see Figure 1), which yield the quantum defect curves
for n ) 2, 3, and 4. The set of clamped nuclei quantum defect
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curves thus obtained is subsequently represented by an energy-
dependent polynomial of the form

where ε( R) ) Unpπ(R) - U+(R) is the binding energy of the
Rydberg electron in the field of the core with the nuclei kept
fixed at a distance R. (The fourth term on the rhs of eq 2 is
discussed below.) The process of reducing the three available
ab initio curves Unpπ (R) to the three functions µ(0)(R), µ(1)(R),
and µ(2)(R) is illustrated in Figure 1a-c. Note that the functions
µ(0)(R), µ(1)(R), and µ(2)(R) allow us to recover the potential
energy curves for n ) 2-4 exactly (because for each R, three
values have been represented in terms of three parameters) by
means of eqs 1 and 2, but we also can predict all of the higher
curves with n > 4. The reliability of this extrapolation (within
reasonable limits) is suggested by the fact that the three quantum
defect curves in Figure 1b nearly coincide.

The last term in eq 2 corresponds to the “specific” mass effect
(mass polarization term) arising from the cross term H3′ )
-(m/4M)∇1∇2 in the molecular Hamiltonian (where m is the
electron mass and M is the nuclear reduced mass). This term
couples the Rydberg and the core electrons and, as shown in
ref 4, contributes a small mass-dependent correction to the

quantum defect. In quantum chemical computations, the same
term arises as part of the adiabatic corrections but unfortunately
is rarely given separately when these are evaluated. Following
ref 4, we take it here independent of R, and energy. We use the
value µspecific ) -0.16 for the npπ1Πu channel.

A similar procedure is applied to the ab initio dipole transition
moments from refs 14 and 16. We first reduce the values
DXfnpπ(R) (Figure 1d) to energy-normalized transition moments
dXfnpπ(R) by multiplying by the square root of the density of
states dν/dε ) (n - µnpπ)3/2 (in au, where ν ) n - µ ) (-2ε)-1/2)
(Figure 1e). It may be seen that the energy-normalized moments
d, while exhibiting less energy dependence than the moments
D shown at the top, are by no means as constant as their
quantum defect counterparts represented in Figure 1b. The
reasons for this will be discussed in section 6 below. We note
on the other hand that the photon absorption from the ground
state effectively takes place in a small region centered around
the equilibrium position near 1.4 a0, where the energy depen-
dence of the d’s is relatively mild. We finally represent these
reduced moments for each R by an expression analogous to
eq 2

The resulting channel dipole transition functions d(0)(R), d(1)(R),
and d(2)(R) for excitation from the ground state to the pπ
Rydberg channel are shown in Figure 1f. In agreement with
what has just been said, the quantities d(1) and d(2) are seen to
be rather small in the region around Re ) 1.4 a0.

3. Vibronic MQDT Calculations

3.1. Theoretical Aspects. The frame transformation method
has been implemented using well-documented MQDT technol-
ogy.2,5,18 In the case of the Q(N) spectral lines and when
hyperfine effects are neglected, the upper states are of pure 1Πu

-

symmetry, and therefore, there are no rotational channel
couplings, with the result that only the vibrational frame
transformation has to be applied. This is done by evaluating
integrals of the type

where N+ ) N+′ in the present case. The µ(q), with index q )
0-2, are the quantum defect functions of eq 2, and �V+N+(R)
are the vibrational eigenfunctions of H2

+ in the vibration-rotation
level V+, N+ of the electronic ground state. The superscript N
() N+ ) N+′) refers to the total angular momentum of the
molecule exclusive of spins, while d refers to Kronig’s symmetry
label, designating levels that have a total parity of -(-1)N.

The energy-dependent vibronic quantum defect matrix is
expressed in terms of the vibrational integrals eq 4 as

where again N+ ) N+′ ) N and where the reference energy
jε(E) is taken as the mean of the channel energies for each pair
of coupled channels

Figure 1. Reduction of quantum chemical data to channel parameters
adapted to MQDT (H2, 1Πu). (a) Ab initio potential energy curves
Unpπ(R); n ) 2 (dashed line), 3 (dot-dashed line), 4 (dot-dot-dashed
line), and U+(R) (ion, full line). (b) Quantum defects µnpπ (n ) 2-4)
(eq 1, same symbols as those for the top panels). (c) Quantum defect
functions µ(0)(R) (full line), µ(1)(R) (dashed line), and 0.1 × µ(2)(R)
(dot-dot-dashed line) (eq 2). (d) Ab initio dipole transition moments
DXfnpπ(R) for n ) 2-4 (same symbols as thosein (a)). (e) Energy-
normalized transition moments obtained after multiplication by the
density of states (same symbols as those in (d)). (f) Dipole transition
functions d(0)(R), 0.1 × d(1)(R), and 0.01 × d(2)(R) (same symbols as
those in (c); eq 3).

µ(ε, R) ) µ(0)(R) + [ε(R)]µ(1)(R) + 1
2

[ε(R)]2µ(2)(R) +

m
M

µspecific(R) (2)

d(ε, R) ) d(0)(R) + [ε(R)]d(1)(R) + 1
2

[ε(R)]2d(2)(R)

(3)

µV+N+,V+′N+′
(q,N,d) ) ∫ �V+N+(R)µ(q)(R)�V+′N+′(R)dR (4)

µV+N+,V+′N+′
(N,d) (E) ) µV+N+,V+′N+′

(0,N,d) + ε̄µV+N+,V+′N+′
(1,N,d) + 1

2
ε̄

2µV+N+,V+′N+′
(2,N,d)

(5)
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(The mass polarization term involving µspecific, which appears
in eq 2, is assumed here to be included with µV+N+,V+′N+′

(0,N,d) ).
The vibronic quantum defect matrix µV+N+,V+′N+′

(N,d) (E) of eq 5
thus evaluated must now be converted into vibronic matrices S
and C, defined such that the vibronic reaction matrix K is
given by K ) SC -1. These matrices are defined as S ) U sin
πµRUtr (with sin replaced by cos or tan in the case of C and K,
respectively),4 where U is the eigenvector matrix of K and µR
are the associated eigenquantum defects. The conversion is done
by employing the procedures described in refs 5 and 19. The
vibronic level energies are then calculated using the well-known
MQDT quantization condition

for each channel j. The νj(E) ) [-2(E - E j
+)]-1/2 are the channel

effective quantum numbers and Bk are the channel mixing
coefficients. The indices j and k run over all vibrational channels
V+N+ specified above. Once an energy E ) En has been found
such that eq 7 is satisfied for all j, the level energy, taken relative
to the ionization potential and in wavenumber units, becomes

where RH2
is the mass-corrected Rydberg constant and En is

the level energy in joules. Note that the use of the mass-corrected
Rydberg constant instead of R∞ is equivalent to including the
term -(m/2M)∇1

2 of the molecular Hamiltonian, which, in the
standard approach, is part of the adiabatic correction.4

An analogous procedure is applied to the transition dipole
moments eq 3. These are used to calculate vibronic channel
dipole transition matrix elements

where �V′′N′′(R) is the vibrational wave function in the ground-
state initial level, which has Kronig symmetry c, and where N
) N′′ ) N+ since we are dealing with Q-transitions here. The
quantities dV+N+,V′′N′′

(q,N,d)
, q ) 0-2, evaluated with the help of eq 9,

are used to construct a set of energy-dependent vibronic
transition moments in analogy with eq 5

The reference energy jε(E) is here taken as

The effective transition moment to the bound Rydberg state
n is finally given by the following superposition of channel
amplitudes:

where Bk are the channel mixing coefficients obtained by solving
eq 7 and where, again, k stands for the ionization channels V+N+

and k′′ stands for V′′N′′. N is the overall normalization factor
of the bound state wave function.

The normalization integral, N 2, for a bound Rydberg state
satisfying the quantization condition eq 7 reads

where the indices j and k run over all vibrational channels V+
in the present application, and �j ) π(νj - l). ∂�j/∂εj ) πνj

3 (in
au) is the well-known Rydberg scaling factor. Equation 13 is a
straightforward generalization of expressions given in Appendix
A of ref 20.

The transition moment Dn for each particular spectral line is
finally converted into the Einstein coefficient A for the transition
by means of the relation

Here, R is the fine structure constant. The transition energy En

- EV′′N′′ is in joules, and the transition moment Dn is in
coulomb ·meters. The brackets (. . .) and |. . .| contain, respec-
tively, the transition energy and the dipole transition moment
in atomic units.

3.2. Numerical Details. The vibration-rotation wave func-
tions �V+N+ have been evaluated in the adiabatic approximation
using the ion ground-state potential energy curve of Wind21 and
the adiabatic correction terms of Bishop and Wetmore.22 The
corresponding ion levels EV+,N++ are those of Wolniewicz and
Orlikowski,23 evaluated including the nonadiabatic and relativ-
istic interactions in addition to the adiabatic corrections. These
ion level energies do not include the hyperfine interactions, but
their accuracy is largely sufficient in the present context. We
used the theoretical ionization potential 124417.491 cm-1 of
Wolniewicz.24 The vibronic matrices S and C were evaluated
with a basis of 25 vibration-rotation channels V+N+ (0 e V+
e 24), with N+ ) 1, 2, 3, or 4, whereby the vibrational wave
functions were integrated from R ) 0.3 to Rmax ) 30 au The
higher solutions (V+ g 15) are situated in the vibrational
continuum of the ion core, where they act as quasibound
ionization thresholds, which help to improve the convergence
of the calculations. The quasibound levels have been calculated
by enforcing the condition that �V+N+(Rmax) ) 0. The ground-
state vibrational wave function �V′′,N′′(R) was evaluated with the
potential energy curve of Wolniewicz.15

For the purposes of comparison, we have also made calcula-
tions in the adiabatic approximation, following refs 25 and 26

ε̄ ≡ ε̄V+N+,V+′N+′(E) ) 1
2

[(E - EV+N+
+ ) + (E - EV+′N+′

+ )]

(6)

∑
k

[cos(πνj)Sjk + sin(πνj)Cjk]Bk ) 0 (7)

[(En - EV+)0,N+)0
+ )/hc] ) -

RH2

[νV+)0,N+)0(En)]
2

(8)

dV+N+,V''N''
(q,N,d) ) ∫ �V+N+(R)d(q)(R)�V''N''(R)dR (9)

dV+N+V''N''
(N,d) (E) ) dV+N+,V''N''

(0,N,d) + ε̄dV+N+,V''N''
(1,N,d) + 1

2
ε̄

2dV+N+,V''N''
(2,N,d)

(10)

ε̄ ≡ ε̄V+N+(E) ) [(E - EV+N+
+ )] (11)

Dn ) 1
N ∑

k

dk,k''(En)Bk(En) (12)

N 2 ) 1
π ∑

j

∂�j

∂εj
[ ∑

k

(cos �jCjk - sin �j Sjk)Bk]
2 +

1
π ∑

j

[ ∑
k

(cos �jCjk - sin �j Sjk)Bk] ×

[ ∑
k

(sin �j

∂Cjk

∂εj
+ cos �j

∂Sjk

∂εj
)Bk] (13)

AnfV''N'' )
4
3

mc2

p
R5(En - EV''N''

2Rhc )3| Dn

ea0
|2

) 2.142 × 1010(En - EV''N''

2Rhc )3| Dn

ea0
|2 s-1

(14)
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but using the latest potential energy curves and adiabatic
corrections for the 1Πu states.14

4. Results

Table 1 contains the results of our calculations concerning
the Q(1) transitions to the four lowest states of 1Πu symmetry
of H2. The table also compares the theoretical data with
experimental line wavenumbers and intensities. Tables 2-5 of
the Supporting Information provide a more complete account
of our calculations of the Q(N), N ) 1-4 transitions, and they
also present the comparisons with experimental and previous
theoretical results. In the following, we discuss the various
aspects in turn.

4.1. Bound State Energies. A large number of Q(1) line
frequencies have been measured experimentally for excitation
energies up to 130000 cm-1 in ref 27 with an absolute accuracy
between about 0.1 and 0.3 cm-1 (depending on the individual
line measurements). These transitions involve principal quantum
number values from n ) 3 up to ∼40 and vibrational quantum
numbers from V ) 0 up to 11. Additional Q(1) lines at higher
energy have been assigned much more recently in ref 17,
however, with an accuracy of only about 5 or 10 cm-1

(depending on the experimental run). Numerous Q(N) lines have
been reported by Takezawa.28 These values are less accurate
(∼1 cm-1) than those of ref 27 since the pressure shift correction
was not applied. Namioka29 measured Q lines involving the
2pπC upper state in absorption, whereas Abgrall et al.30,31

observed the emission of the Q(N) transitions from the 2pπC
and 3pπD upper states with an accuracy of typically 0.1 cm-1.
Some of the earlier observations mentioned above have been
used for comparison with the first ab initio MQDT calculations
carried out in the 1970s.4 Most recently, numerous level
positions belonging to the 2pπC, 3pπD, and 4pπD′ 1Πu

- states
have been evaluated theoretically in the framework of a coupled-
equations ab initio approach.32 For our present purposes, we
have used the following experimental data:

• n ) 2, C and n ) 3, D state; Q(1)-Q(4); refs 30 and 31.
• n g 4, Q(1) (except n ) 4-8, V ) 0); ref 27.
• n g 4, Q(2)-Q(4); ref 28.
• n ) 4-8, V ) 0; ref 28.
Figure 2 displays the residuals observed - calculated obtained

with the present MQDT approach (squares), those obtained in
the adiabatic approximation (triangles), and those obtained in a
nonadiabatic coupled-equations approach32 (circles) for the n
) 2, C and n ) 3, D states. The superiority of the quantum
defect method in the present application is obvious, in com-
parison with the adiabatic approximation, which neglects the
nonadiabatic interactions, and also in comparison with the
nonadiabatic coupled-equations calculations, where these exist.

Figure 3 displays the deviations observed - calculated for
all Q(1)-Q(4) transitions as functions of the total energy.
Squares indicate the residuals obtained with MQDT, whereas
circles represent the values corresponding to the subset of the
Q(N) lines for which coupled-equations calculations are avail-
able.32 Except for the early MQDT results reported in refs 4
and 27 and the recent very high-n hyperfine calculations reported
in refs 11 and 13, no nonadiabatic calculation of Q(N) singlet
transitions has, to our knowledge, ever been published for states
with n > 5 or 6. Figure 3 shows that use of the MQDT
techniques leads to an improvement of the agreement between
experiment and theory. In particular, we see that several Q lines,
which, when calculated in the adiabatic approximation, are
situated several cm-1 away from the baseline of Figure 3 and
therefore are perturbed, are correctly reproduced by MQDT. A

few observed lines are not reproduced by MQDT. The most
extreme examples are the 7pπ, V ) 1 Q(2) line near 124228
cm-1, the 8pπ, V ) 0 Q(1) line near 122678 cm-1, and the 5pπ,
V ) 2 Q(3) line near 124060 cm-1, for which the MQDT values
deviate by +14, +7, and -8 cm-1 from the reported experi-
mental value, respectively. We suspect that in these three cases,
the experimental assignment may be in error. The remaining Q
lines which are not reproduced by the theory to within their
nominal error bar may well correspond in some cases to blended
lines, which had not been recognized as such in the experimental
work.

The overall improvement achieved by the MQDT is also
borne out by the mean and the maximum values of the
deviations of observed - calculated, which are collected in
Table 6. It may be seen that the mean deviations of observed
- calculated, which we obtain for the 2pπC and 3pπD states
are about a factor of 2 lower than those in the previously best
calculations. The main progress achieved by the present work,
however, is that the calculations have been extended to high n
values.

We mention finally that high Rydberg levels with n ) 55 to
65 and with V ) 0, having the same upper-state symmetry as
the Q(1) transitions (i.e., N ) N+ ) 1, positive total parity),
have been observed by millimeter wave spectroscopy with sub-
MHz accuracy.11 These high-precision data have also been
interpreted by MQDT in an extended approach which accounts
for hyperfine interaction. We have not included these levels in
our analysis as they are outside of the scope of the present work.

4.2. Line Intensities. Figures 4 and 5 display the observed
and calculated emission probabilities, plotted as functions of
the vibrational quantum number V for the n ) 3-6 and 7-10
members of the npπ Q(1) series of H2. For each vibrational
progression associated with an electronic series member, the
continuous line without symbols represents the probabilities
calculated in the adiabatic approximation. Each of these lines
exhibits a smooth Franck-Condon-type envelope whose maxi-
mum occurs for V ) 2, as in the photoelectron spectrum of H2.
The overall decrease of the Franck-Condon envelope propor-
tional to n-3 is also clearly visible along the sequence of plots;
for instance, between n ) 3 and 10, the Franck-Condon
maximum drops by a factor of (10/3)3 ) 37, namely, from 7 ×
107 s-1 to 0.2 × 107 s-1, as expected on the basis of the Rydberg
scaling rule.

This regularity is disrupted by the effects of nonadiabatic
(vibronic) interactions (cf. the data points with filled and open
squares in the figures). These perturbations are seen to become
stronger as n increases, and they increase also with increasing
vibrational excitation (compare, for instance, the inset in Figure
4a). This happens because the vibrational progressions become
increasingly interleaved at higher energy, and therefore, more
near coincidences of levels occur, which allows the channel
couplings to become active. The quantum interferences yield
both a strengthening and a weakening of transition intensities,
and by and large, the lower n members of the Q(1) series which
are inherently strong become weakened by the vibronic cou-
pling, whereas the opposite occurs in the higher n members,
which are inherently rather weaker. Figure 6 is an analogous
plot for the Q(2) series, for which there is less experimental
information.

The only database available at present that provides informa-
tion on the intensities of the Q(N) absorption lines of H2 is the
MOLAT astrophysical base published by Abgrall et al.,33,34

which lists line intensities involving the C and D upper states
only. The intensity data contained in this database result from
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TABLE 1: Wavenumbers and Spontaneous Emission Coefficients to the W′′ ) 0 Level for the Q(1) Absorption Transitions to
1Πu

- Rydberg States of H2

V state
wavenumber calc.

present (cm-1)
obs.a - calc.

present (cm-1) obs. ref.
obs. - calc.;
ref 32 (cm-1)

A(calc.) present
(106 s-1)

A(calc.); ref 35
(106 s-1)

A(obs.)a; ref 17
(106 s-1)

0 2pπC 99033.01 -0.5 (0.1) 30 -0.2 154.72 155.70
1 2pπ 101338.49 -0.4 (0.1) 30 -0.4 249.51 249.80
2 2pπ 103509.98 -0.5 (0.1) 30 -0.8 251.24 250.00
3 2pπ 105550.08 -0.4 (0.1) 30 -1.0 205.97 203.90
4 2pπ 107460.46 -0.2 (0.1) 30 -1.2 151.85 149.60
5 2pπ 109241.70 -0.0 (0.1) 30 -1.4 105.76 103.60
6 2pπ 110892.91 0.4 (0.1) 30 -1.5 71.49 69.66
7 2pπ 112411.77 0.6 (0.1) 30 -1.8 47.64 46.23
8 2pπ 113793.90 0.9 (0.1) 30 -1.9 31.51 30.59
9 2pπ 115032.50 1.1 (0.1) 30 -1.8 21.63 18.80
10 2pπ 116117.15 0.4 (0.1) 30 -1.9 13.45 13.37
11 2pπ 117031.96 -0.4 (0.1) 30 -1.6 8.53 8.68
12 2pπ 117751.83 -1.6 (0.1) 30 -1.7 5.04 5.39
13 2pπ 118233.59 -3.2 (0.1) 30 -4.0 2.37 2.64
0 3pπD 112813.53 -0.4 (0.1) 31 -0.4 37.09 38.05
1 3pπ 115036.42 -0.4 (0.1) 31 -0.6 64.55 67.22
2 3pπ 117130.01 -0.5 (0.1) 31 -0.7 71.89 70.41
3 3pπ 119098.02 -0.7 (0.1) 31 -1.0 63.51 60.42
4 3pπ 120943.46 -0.7 (0.1) 31 -1.2 49.78 46.88
5 3pπ 122668.51 -0.8 (0.1) 31 -1.4 36.28 34.13
6 3pπ 124274.61 -0.7 (0.1) 31 -1.5 24.88 23.98
7 3pπ 125760.44 -0.6 (0.1) 31 -1.6 23.25 16.53
8 3pπ 127129.80 -0.7 (0.1) 31 -1.9 13.37 11.31 12.7 (0.9)
9 3pπ 128377.82 -0.4 (0.1) 31 -1.8 8.61 7.73 8.4 (0.6)
10 3pπ 129502.71 -0.3 (0.1) 31 -2.0 5.84 5.29 6.8 (0.5)
11 3pπ 130499.56 0.0 (0.1) 31 -2.0 4.95 3.63 5.5 (0.4)
12 3pπ 131365.79 0.1 (0.1) 31 -2.0 3.14 2.49 4.1 (0.4)
13 3pπ 132093.62 -0.2 (0.1) 31 -2.0 1.57 1.70 2.1 (0.15)
14 3pπ 132674.41 -1.2 (0.1) 31 -2.3 1.45 1.12 1.3 (0.2)
15 3pπ 133101.59 6.4 (5) 17 5.7 0.88 0.69 1.1 (0.13)
16 3pπ 133367.12 5.3 (5) 17 5.1 0.32 0.34 0.74 (0.11)
17 3pπ 133468.31 5.6 (5) 17 5.1 0.00 0.07 0.10 (0.01)
0 4pπD′ 117775.64 -0.4 (1.0) 28 -0.7 13.93 14.54
1 4pπ 119975.65 -0.1 (1.0) 28 -3.4 29.12 25.63
2 4pπ 122050.78 -0.4 (1.0) 28 -3.5 32.98 29.01
3 4pπ 124001.93 -0.1 (0.1) 27 -2.8 29.54 27.14
4 4pπ 125834.24 -0.3 (0.1) 27 -2.3 15.60 15.45 11.0 (3.0)
5 4pπ 127543.33 0.5 (0.1) 27 3.2 16.98 14.56 13.0 (2.0)
6 4pπ 129140.36 -0.8 (0.1) 27 -2.8 12.20 10.93 11.3 (2.5)
7 4pπ 130622.28 3 (10) 36 1.3 7.22 6.70 5.9 (1.5)
8 4pπ 131987.82 6 (5) 36 5.7 5.41 5.60 5.4 (0.6)
9 4pπ 133240.20 6 (5) 36 6.9 3.16 3.49 4.0 (0.6)
10 4pπ 134379.91 7 (5) 36 1.16 2.55 1.2 (0.2)
11 4pπ 135384.53 1 (5) 36 2.19 1.83 1.6 (0.5)
12 4pπ 136282.75 6 (5) 36 1.68 1.32 2.3 (0.3)
13 4pπ 137055.32 9 (5) 36 0.83 0.93 0.84 (0.1)
14 4pπ 137679.17 1 (10) 36 1.45 0.65 1.18 (0.1)
15 4pπ 138199.74 7 (10) 36 0.41 0.43 0.42 (0.1)
16 4pπ 138555.12 5 (10) 36 0.52 0.25 0.67 (0.1)
17 4pπ 138776.83 3 (10) 36 0.15 0.14 0.12 (0.05)
0 5pπD′′ 120113.27 -0.2 (1.0) 28 3.88
1 5pπ 122309.38 -0.6 (1.0) 28 9.21
2 5pπ 124383.17 -0.9 (0.1) 27 4.02 3.6 (0.4)
3 5pπ 126319.12 -1.0 (0.1) 27 12.37 8.0 (0.6)
4 5pπ 128144.53 -2.4 (0.1) 27 9.94 5.3 (0.4)
5 5pπ 129851.66 1.5 (0.1) 27 7.40 5.5 (0.4)
6 5pπ 131443.05 3 (5) 17 5.57 3.77 (0.25)
7 5pπ 132920.57 9 (5) 17 3.95 8.9 (0.6)
8 5pπ 134281.80 9 (5) 17 3.08 3.7 (0.3)
9 5pπ 135534.97 3 (5) 17 1.70 1.8 (0.2)
10 5pπ 136674.43 8 (5) 17 1.54 2.3 (0.3)
11 5pπ 137714.71 -10 (10) 17 0.02 0.54 (0.06)
12 5pπ 138604.29 2 (10) 17 0.55 0.30 (0.04)
13 5pπ 139387.40 0.39
14 5pπ 140044.72 0.28
15 5pπ 140569.57 0.35
16 5pπ 140957.90 0.14

a Experimental uncertainty in parentheses.
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an empirical nonadiabatic coupled-equations calculation. This
calculation takes account of the interaction between the n ) 2,
C and n ) 3, D members of the npπ series and thus produces
theoretical line intensities in which at least part of the nona-
diabatic interactions have been included. It is instructive to
compare our results with the Einstein A coefficients listed in
this database.35

Figure 7 contains plots of calculated and/or observed Einstein
A coefficients divided by those evaluated in the adiabatic
approximation. It can be seen that in the case of the C upper
state (Figure 7a and d), the nonadiabatic effects contribute less
than 10% to the emission probabilities. The Q(1) line corre-
sponding to V ) 9 in the upper state stands out since its intensity
is perturbed by vibronic interaction with the n ) 3, D (V ) 1)
member of the Rydberg series. Our calculation predicts a
strengthening of the Q(1) line associated with the C state,
whereas the MOLAT data predict a weakening of the same line.
We suspect that this disagreement is due to a sign inconsistency
in the coupled-equations calculations. Panels b and e of Figure
7 compare the results for the n ) 3, D upper state. The
calculations reported in the MOLAT base do not include
interactions with n > 3 members, and therefore, these values

are, in essence, equivalent to the adiabatic approximation, as is
indeed borne out by the data points shown in the figure.

Nonadiabatic perturbative calculations involving, in addition,
the n ) 4, D′ state have been published recently in ref 36. Up
to V ) 8 in the D′ upper-state progression, the perturbative
nonadiabatic and the MQDT results are seen to be basically
equivalent (Figure 7c and f), but for higher V, only the MQDT
results take account of vibronic perturbations with higher npπ
series members. Note how for Q transitions involving the n )
4, D′ upper state, the effects of vibronic interaction are much
stronger and may modify the intensities up to a factor of 2 while
the energy structure itself is hardly perturbed at all. The MOLAT
base does not include the n ) 4, D′ member of the npπ series.

We now turn to the comparison of our calculated line
intensities with the absolute intensity measurements of ref 17.
Figures 4-6 show that, with few exceptions, concerning mainly
some of the weaker lines, MQDT accounts rather well, although
not perfectly, for the intensity perturbations. There are, in all,
89 Q(1) and Q(2) lines whose intensities have been measured.
We find that out of these, the intensities of (a) 19 lines, or 21%,
are reproduced by MQDT but were not in the adiabatic
approximation because they are notably affected by vibronic
coupling; (b) 10 lines, or 11%, are improved by MQDT, without,
however, agreeing with experiment to within the experimental
error; (c) 51 lines, or 57%, are accounted for by the MQDT as
well as by the adiabatic calculation because they are not subject
to nonadiabatic interactions; (d) 5 lines, or 6%, were not
accounted for by the adiabatic aproximation but are even in
worse disagreement when MQDT is used, with a disagreement
larger than 30%, which is the largest experimental uncertainty;
and (e) 4 lines, or 4%, which were accounted for in the adiabatic
approximation, are no longer accounted for by MQDT.

5. Discussion

Vibronic channel interactions of the type studied here are
known to be dominated by ∆V ) (1 couplings, leading, for
instance, to the well-known “∆V ) -1 propensity rule” in
autoionization.37 The detailed analysis of the present calculations
shows that the intensity perturbations of the Q(N) lines are, in
many cases, more complex. Indeed, many of the most conspicu-
ous intensity perturbations involve levels differing by ∆V ) 2
or 3. For instance, the 4pπ, V ) 4 Q(N) lines are weakened
because their intensities are transferred toward the corresponding
3pπ, V ) 7 lines, which are strengthened. Another example is
afforded by 4pπ, V ) 14, which is coupled to 5pπ, V ) 11, that
is, by a ∆V ) 3 interaction, with the result that (as the channel
mixing coefficients Bk from eq 7 show) the vibronic wave
functions are nearly 50:50 mixtures of the unperturbed channel
components. As a consequence, the intensities of the Q(N) lines
leading up to 5pπ, V ) 11 are nearly completely transferred to
the corresponding lines involving 4pπ, V ) 14.

Another complication which also emerges from our calcula-
tions is that, very often, the interactions are, in reality, multistate
couplings. This fact is again borne out by the channel coupling
coefficients Bk, but it also becomes apparent when one attempts
to apply the familiar intensity sum rule. This rule states that
the overall absorption intensity must remain unchanged when
the upper-state level couplings are introduced in the calculation
(in other words, there is an overall cancellation of constructive
and destructive interferences). The intensity sum rule is of course
verified by the present calculations, but in many cases, it turns
out that one has to sum over more than two interacting upper
levels in order to arrive at the required result. For instance, 4pπ,
V ) 10 is strongly coupled to 5pπ, V ) 8. The channel mixing

Figure 2. Deviations ∆E ) E(observed) - E(calculated), in cm-1, of
Q(1) [(a) and (b)] and Q(2) [(c) and (d)] transition energies involving
the 2pπC [(a) and (c)] and 3pπD [(b) and (d)] upper states in H2, plotted
as functions of the upper-state vibrational quantum number V. Squares:
present MQDT calculations. Circles: nonadiabatic (coupled equations)
(Wolniewicz et al.32). Triangles: adiabatic approximation.

Figure 3. Deviations ∆E ) E(observed) - E(calculated), in cm-1, of
the Q(1), Q(2), Q(3), and Q(4) transitions (from bottom to top) in H2,
plotted as functions of their energy (2pπC state omitted). Squares:
present MQDT calculations. Circles: coupled-equations calculation.32
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coefficients and the application of the intensity sum rule indicate,
however, that 6pπ, V ) 7 and 9pπ, V ) 6 are involved in this
interaction as well.

Multistate interactions occur more and more frequently at
higher energies where the density of states increases. An extreme
example is afforded by the Q(1) transition leading to the 5pπ,
V ) 2 upper state, which is coupled to the corresponding 7pπ,
V ) 1 level as well as to the high npπ, V ) 0 series converging
to the V+ ) 0, N+ ) 1 ionization threshold. This perturbation
is illustrated in Figure 8. The figure demonstrates how MQDT
allows us to assess the contributions of the various vibronic
channels to the final line positions and intensities. The filled
circles in the upper panel indicate the positions and intensities
of 5pπ, V ) 2 and 7pπ, V ) 1 in the adiabatic approximation;
the V ) 2 line has more intensity due to the more favorable
Franck-Condon factor and due to the lower n value. The filled
triangles correspond to a calculation where only the V+ ) 0

and 1 channels have been included in the MQDT calculation;
the vibronic ∆V+ ) 1 interaction has increased the energy gap
between the two lines and reversed their relative intensities. The
lower panel is a zoom showing how inclusion of the V+ ) 0
channel dilutes the 7pπ, V ) 1 line among the high-n (n ≈
150-200) V+ ) 0 Ry levels (open circles in the lower panel of
the figure). Finally, inclusion of channels corresponding to V+
> 2 shift the resulting “complex resonance” to higher energy,
the main contributor to this shift being the 4pπ, V ) 3 state,
which lies at somewhat lower energy. Another example of a
level which is embedded in a quasi-continuum is 7pπ, V ) 2,
N ) 1, which is situated near the n ≈ 30 member of the high-n
V ) 1 Ry series. According to our calculation, 7pπ, V ) 2, N
) 1 and 30pπ, V ) 1, N ) 1 are mixed and share the intensity
associated with the former unperturbed level, but these lines
were unresolved both in the experiment of ref 27 and in the
intensity measurements of ref 17.

TABLE 6: Deviations of Observed - Calculated of Q(N) (N ) 1-4) Transitions in 1Πu
- Rydberg States of H2

a

MQDTb coupled eqs. c

state ref. meand rmse max.f mean rms max. num.g

Q(1) 2pπC 30 -0.04 0.67 -1.6 -1.17 1.32 1.9 13
3pπD 31 -0.54 0.61 -1.2 -1.54 1.60 -2.3 15
4pπD′ 27, 28 -0.28 0.36 -0.8 -2.66 2.85 -3.9 7
higher npπ 27, 28 -0.49 1.16 6.8 122

Q(2) 2pπC 30 -0.14 0.74 -1.5 -1.35 1.46 -1.9 13
3pπD 31 -0.63 0.69 -0.9 -1.55 1.68 -2.7 14
4pπD′ 28 -0.18 0.90 1.7 -2.80 3.18 -5.5 6
higher npπ 28 -0.39 0.76 1.7 58

Q(3) 2pπC 30 1.00 1.34 2.3 -1.36 1.45 2.0 13
3pπD 31 0.46 0.71 1.6 -1.57 1.74 -3.4 14
4pπD′ 28 0.02 1.07 2.1 -2.84 3.00 -4.2 6
higher npπ 28 0.25 1.45 8.3 57

Q(4) 2pπC 30 0.74 1.19 2.2 -1.37 1.46 2.0 13
3pπD 31 0.42 0.69 1.3 -1.58 1.63 -2.8 14
4pπD′ 28 -0.24 0.61 -1.2 -2.72 2.81 -3.3 4
higher npπ 28 0.53 1.08 3.5 33

a In cm-1. b Present. c Reference 32. d Mean deviation of theoretical calculations. e Root-mean-square deviation of theoretical calculations.
f Maximum deviation. g Number of levels used in calculating the mean and the rms error.

Figure 4. Einstein A coefficients for the npπ Q(1) series (V′′ ) 0) in
H2 as functions of the upper-state vibrational quantum number V; (a) n
) 3 (D state), (b) n ) 4 (D′ state), (c) n ) 5 (D′′ state), and (d) n )
6. Filled squares with error bars: experimental values. Continuous lines
without symbols: adiabatic approximation. Open squares: ab initio
MQDT. Open triangles: nonadiabatic calculations. Note that the ordinate
scales are different in (a), (b), (c), and (d).

Figure 5. Einstein A coefficients for the npπ Q(1) series (V′′ ) 0) in
H2 as functions of the upper-state vibrational quantum number V; (a) n
) 7, (b) n ) 8, (c) n ) 9, and (d) n ) 10. Filled squares with error
bars: experimental values. Continuous lines without symbols: adiabatic
approximation. Open squares: ab initio MQDT. Note that the ordinate
scales are different in (a), (b), (c), and (d).
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A somewhat counterintuitive aspect of the present calculations
is that they show that strong interactions do not necessarily
produce strong intensity perturbations, while, on the other hand,
rather weak channel mixings may lead to conspicuous intensity
perturbations. For example, 4pπ, V ) 5 is mixed strongly with
6pπ, V ) 3 and weakly with 10pπ, V ) 2, which has ∼4%
weight in the wave function. Yet, this perturbation affects the
A value of 10pπ, V ) 2 strongly, but has only a limited effect
on 4pπ, V ) 5.

6. Conclusion

We have shown that vibronic interactions among the 1Πu
-

excited states of H2, while only weakly affecting the energy
level positions, have a major effect on the intensitites of the
Q(N) absorption lines. Ab initio multichannel quantum defect
theory proves to be an adequate theoretical tool for the
description of the absolute intensities of these transitions, and
it remains competitive with regard to the coupled channels
approach inasmuch as energy level positions are concerned.

A comment on some of the comparative advantages and
disadvantages of the nonadiabatic MQDT and coupled equations
approaches may be in order here. The strength of MQDT is
that multichannel quantum defect theory accounts, albeit in an
approximate manner, for nonadiabatic interactions of all np 1Πu

-

excited states, including those belonging to the electronic
continuum. By contrast, the coupled equations approach of ref
32 included interactions only within a restricted manifold of
states, namely, the 2pπ, 3pπ, 4pπ, and 4fπ states. The electronic
interaction coupling functions involving the p states with n )
2-4 were calculated in ref 32 essentially exactly, whereas
MQDT implicitly assumes approximate values for these interac-
tion matrix elements. For instance, in the present application,
it is assumed that the angular dependence of the Rydberg wave
function has pure l ) 1, that is, p, character for all R values.
The f channels are not included explicitly in our treatment, and
therefore, any l mixing between the l ) 1 and 3 channels is
disregarded. However, the restriction of our treatment to nominal
l ) 1 channels concerns only the nonadiabatic interactions,
which themselves are relatively small in the excited levels
studied here. Figures 2 and 3 and Table 6 demonstrate that,
despite these shortcomings, the balance ultimately leans in favor
of the MQDT approach.

The present work constitutes a first step toward a full
theoretical description of the absorption spectrum of H2,
including absolute line intensities up to the H(n ) 3) + H(1s)
and H(n ) 4) + H(1s) dissociation limits. In order to achieve
this goal, several additional features will have to be introduced
into the MQDT approach used here. Beyond including rotational
channel interactions, which are not relevant for the Q transitions
studied here, one will have to include l mixing interactions such
as the p-f mixing just mentioned. The restriction of our
treatment to nominal l ) 1 channels obviously must eventually
become inadequate as the energy increases as the range of
vibrational motion extends to larger R values and the molecule
departs more and more from spherical symmetry. The clamped
nuclei ab initio calculations of the Wolniewicz group14 indicate
indeed that a rapid change of character of the electronic 1Πu

wave functions occurs near R ) 10 au, which is due to avoided
crossings between Born-Oppenheimer curves of predominant
p and f character, respectively. It produces the cusp-like behavior
of the dipole transition functions d(i)(R) seen in Figure 1 at this
R value. This type of interaction affects the 1Σu channels much

Figure 6. Einstein A coefficients for the npπ Q(2) series (V′′ ) 0) in
H2 as functions of the upper-state vibrational quantum number V; (a) n
) 3 (D state), (b) n ) 4 (D′ state), and (c) n ) 5 (D′′ state). Filled
squares with error bars: experimental values. Continuous lines without
symbols: adiabatic approximation. Open squares: ab initio MQDT. Note
that the ordinate scales are different in (a), (b), and (c).

Figure 7. Ratios of nonadiabatic or observed to adiabatic Einstein A
coefficients for the npπ Q(1) (V′′ ) 0) [(a), (b), (c)] and Q(2) lines (V′′
) 0) [(d), (e), (f)] in H2 as functions of the upper-state vibrational
quantum number V. Open circles: MOLAT database/adiabatic. Open
squares: MQDT/adiabatic. Filled squares with error bars: experimental/
adiabatic. Triangles: nonadiabatic/adiabatic (ref 36); (a and d) n ) 2
(C state), (b and e) n ) 3 (D state), (c and f) n ) 4 (D′ state).

Figure 8. Q(1) Einstein A coefficients (V′′ ) 0) near the V+ ) 0, N+

) 1 ionization threshold of H2. (Upper panel) Filled circles: positions
and intensities of 5pπ, V ) 2 and 7pπ, V ) 1 calculated in the adiabatic
approximation. Filled triangles: positions and intensities of 5pπ, V ) 2
and 7pπ, V ) 1 calculated by MQDT including the V+ ) 1 and 2
channels only. (Lower panel) Zoom of the region near 7pπ, V ) 1
(indicated by a horizontal arrow in the upper panel). Open circles: result
of the MQDT calculation when the V+ ) 0 channel is included in
addition to V+ ) 1 and 2. Filled circles: result of the converged MQDT
calculation including 0 e V+ e 24.
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more strongly than the 1Πu channels. These electronic interac-
tions produce double-minimum potential energy curves of the
type familiar from the 1Σg

+ manifold of states, which will need
to be taken into account properly and whose effects in the case
of ungerade channels at higher energy are not yet well
understood.
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